Industrial Automation News Hubb
Advertisement Banner
  • Home
  • Automation News
  • Future of Automation
  • Contact
No Result
View All Result
  • Home
  • Automation News
  • Future of Automation
  • Contact
No Result
View All Result
Gourmet News Hubb
No Result
View All Result
Home Automation News

Choosing Sensors Suitable for Automation Welding Environments

admin by admin
August 24, 2022
in Automation News


Standard sensors and equipment won’t survive for very long in automated welding environments where high temperatures, flying sparks and weld spatter can quickly damage them. Here are some questions to consider when choosing the sensors that best fit such harsh conditions:

    • How close do you need to be to the part?
    • Can you use a photoelectric sensor from a distance?
    • What kind of heat are the sensors going to see?
    • Will the sensors be subject to weld large weld fields?
    • Will the sensors be subject to weld spatter?
    • Will the sensor interfere with the welding process?

Some solutions include using:

    • A PTFE weld spatter resistant and weld field immune sensor
    • A high-temperature sensor
    • A photoelectric diffuse sensor with a glass face for better resistance to weld spatter, while staying as far away as possible from the MIG welding application

Problem, solution

A recent customer was going through two sensors out of four every six hours. These sensors were subject to a lot of heat as they were part of the tooling that was holding the part being welded. So basically, it became a heat sink.

The best solution to this was to add water jackets to the tooling to help cool the area that was being welded. This is typically done in high-temperature welding applications or short cycle times that generate a lot of heat.

    • Solution 1 was to use a 160 Deg C temp sensor to see if the life span would last much longer.
    • Solution 2 was to use a plunger prob mount to get more distance from the weld area.

Using both solutions was the best solution. This increased the life to one week of running before it was necessary to replace the sensor. Still better than two every 6 hours.

Taking the above factors into consideration can make for a happy weld cell if time and care are put into the design of the system. It’s not always easy to get the right solution as some parts are so small or must be placed in tight areas. That’s why there are so many choices.

Following these guidelines will help significantly.

Like this:

Like Loading…





Source link

Previous Post

Industrial Machinery Failure Types and Implications for Maintenance Approaches

Next Post

Capacitive, the Other Proximity Sensor

Next Post

Capacitive, the Other Proximity Sensor

Recommended

Reducing Assembly Line Mistakes With the Error Proofing Platform Station

4 months ago

The Unsung Hero of Robotic Screwdriving

5 months ago

Do the Numbers Really Add Up?

2 months ago

Security in the World of the Industrial Internet of Things

6 months ago

What’s New in Robotics? 14.10.2022

4 months ago

Earnings Multipliers: How to Make $10,000 a Month with Chatbots | by Eyelevel.ai

5 months ago

© 2022 Industrial Automation News Hubb All rights reserved.

Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Privacy Policy and Terms & Conditions.

Navigate Site

  • Home
  • Automation News
  • Future of Automation
  • Contact

Newsletter Sign Up.

No Result
View All Result
  • Home
  • Automation News
  • Future of Automation
  • Contact

© 2022 Industrial Automation News Hubb All rights reserved.