[ad_1]
Freeth, T. et al. Decoding the ancient Greek astronomical calculator known as the Antikythera mechanism. Nature 444, 587–591 (2006).
Bromley, A. G. Charles Babbage’s analytical engine, 1838. Ann. Hist. Comput. 20, 29–45 (1998).
Bush, V. The differential analyzer. A new machine for solving differential equations. J. Franklin Inst. 212, 447–488 (1931).
Roy, K., Jaiswal, A. & Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 575, 607–617 (2019).
Adleman, L. M. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994).
McEvoy, M. A. & Correll, N. Materials that couple sensing, actuation, computation, and communication. Science 347, 1261689 (2015).
Hauser, H., Ijspeert, A. J., Füchslin, R. M., Pfeifer, R. & Maass, W. Towards a theoretical foundation for morphological computation with compliant bodies. Biol. Cybern. 105, 355–370 (2011).
Müller, V. C. & Hoffmann, M. What is morphological computation? On how the body contributes to cognition and control. Artif. Life 23, 1–24 (2017).
Laschi, C. & Mazzolai, B. Lessons from animals and plants: the symbiosis of morphological computation and soft robotics. IEEE Robot. Autom. Mag. 23, 107–114 (2016).
Caulfield, H. J. & Dolev, S. Why future supercomputing requires optics. Nat. Photon. 4, 261–263 (2010).
Miller, D. A. Are optical transistors the logical next step? Nat. Photon. 4, 3–5 (2010).
Ospelkaus, C. et al. Microwave quantum logic gates for trapped ions. Nature 476, 181–184 (2011).
Lekitsch, B. et al. Blueprint for a microwave trapped ion quantum computer. Sci. Adv. 3, e1601540 (2017).
Katsikis, G., Cybulski, J. S. & Prakash, M. Synchronous universal droplet logic and control. Nat. Phys. 11, 588–596 (2015).
Weaver, J. A., Melin, J., Stark, D., Quake, S. R. & Horowitz, M. A. Static control logic for microfluidic devices using pressure-gain valves. Nat. Phys. 6, 218–223 (2010).
Mosadegh, B., Bersano-Begey, T., Park, J. Y., Burns, M. A. & Takayama, S. Next-generation integrated microfluidic circuits. Lab Chip 11, 2813–2818 (2011).
Woodhouse, F. G. & Dunkel, J. Active matter logic for autonomous microfluidics. Nat. Commun. 8, 15169 (2017).
Preston, D. J. et al. Digital logic for soft devices. Proc. Natl Acad. Sci. USA 116, 7750–7759 (2019).
Volkov, A. G., Adesina, T., Markin, V. S. & Jovanov, E. Kinetics and mechanism of Dionaea muscipula trap closing. Plant Physiol. 146, 323–324 (2008).
Yang, R., Lenaghan, S. C., Zhang, M. & Xia, L. A mathematical model on the closing and opening mechanism for venus flytrap. Plant Signal. Behav. 5, 968–978 (2010).
Jiang, Y., Korpas, L. M. & Raney, J. R. Bifurcation-based embodied logic and autonomous actuation. Nat. Commun. 10, 128 (2019). Demonstrates environmentally responsive mechanical logic by using bistable beam mechanisms and stimuli-responsive materials.
Horsman, C., Stepney, S., Wagner, R. C. & Kendon, V. When does a physical system compute? Proc. Royal Soc. Lond. A 470, 20140182 (2014). Provides a framework for unconventional computing, distinguishing abstract computation from physical embodiment.
Feynman, R. P. Feynman Lectures on Computation (CRC Press, 2018).
MacLennan, B. J. Natural computation and non-Turing models of computation. Theor. Comput. Sci. 317, 115–145 (2004).
Silva, A. et al. Performing mathematical operations with metamaterials. Science 343, 160–163 (2014).
Mohammadi Estakhri, N., Edwards, B. & Engheta, N. Inverse-designed metastructures that solve equations. Science 363, 1333–1338 (2019).
Zangeneh-Nejad, F. & Fleury, R. Topological analog signal processing. Nat. Commun. 10, 2058 (2019).
Howell, L. L. Compliant Mechanisms (John Wiley & Sons, 2001).
Qiu, J., Lang, J. H. & Slocum, A. H. A curved-beam bistable mechanism. J. Microelectromech. Syst. 13, 137–146 (2004).
Oh, Y. S. & Kota, S. Synthesis of multistable equilibrium compliant mechanisms using combinations of bistable mechanisms. J. Mech. Des. 131, 021002 (2009).
Cazottes, P., Fernandes, A., Pouget, J. & Hafez, M. Bistable buckled beam: modeling of actuating force and experimental validations. J. Mech. Des. 131, 101001 (2009).
Camescasse, B., Fernandes, A. & Pouget, J. Bistable buckled beam: elastica modeling and analysis of static actuation. Int. J. Solids Struct. 50, 2881–2893 (2013).
Wu, C. C., Lin, M. J. & Chen, R. The derivation of a bistable criterion for double V-beam mechanisms. J. Micromech. Microeng. 23, 115005 (2013).
Ion, A., Wall, L., Kovacs, R. & Baudisch, P. Digital mechanical metamaterials. In Proc. 2017 CHI Conference on Human Factors in Computing Systems 977–988 (ACM, 2017). Demonstrates the use of 3D-printed modular bistable elements to perform digital logic, including ‘combination lock’ mechanisms.
Song, Y. et al. Additively manufacturable micro-mechanical logic gates. Nat. Commun. 10, 882 (2019). Realizes a full set of digital mechanical logic gates via 3D printing of bistable flexural beams.
Hälg, B. On a micro-electro-mechanical nonvolatile memory cell. IEEE Trans. Electron Dev. 37, 2230–2236 (1990). Provides an early example of the use of constrained beams to represent binary information.
Raney, J. R. et al. Stable propagation of mechanical signals in soft media using stored elastic energy. Proc. Natl Acad. Sci. USA 113, 9722–9727 (2016). Demonstrates mechanical diodes and logic gates based on the propagation of stable, nonlinear transition waves in architected soft systems of coupled bistable beams.
Yasuda, H., Tachi, T., Lee, M. & Yang, J. Origami-based tunable truss structures for non-volatile mechanical memory operation. Nat. Commun. 8, 962 (2017). Demonstrates volumetric origami cells with tuneable stability and stiffness that store bit information in a bistable potential-energy landscape.
Hanna, B. H., Lund, J. M., Lang, R. J., Magleby, S. P. & Howell, L. L. Waterbomb base: a symmetric single-vertex bistable origami mechanism. Smart Mater. Struct. 23, 094009 (2014).
Silverberg, J. L. et al. Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nat. Mater. 14, 389–393 (2015).
Saito, K., Tsukahara, A. & Okabe, Y. New deployable structures based on an elastic origami model. J. Mech. Des. 137, 021402 (2015).
Jianguo, C., Xiaowei, D., Ya, Z., Jian, F. & Yongming, T. Bistable behavior of the cylindrical origami…
[ad_2]
Read More:Mechanical computing – Nature