Mechanical computing – Nature

[ad_1]

  • 1.

    Freeth, T. et al. Decoding the ancient Greek astronomical calculator known as the Antikythera mechanism. Nature 444, 587–591 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 2.

    Bromley, A. G. Charles Babbage’s analytical engine, 1838. Ann. Hist. Comput. 20, 29–45 (1998).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • 3.

    Bush, V. The differential analyzer. A new machine for solving differential equations. J. Franklin Inst. 212, 447–488 (1931).

    MATH 
    Article 

    Google Scholar
     

  • 4.

    Roy, K., Jaiswal, A. & Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 575, 607–617 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 5.

    Adleman, L. M. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 6.

    McEvoy, M. A. & Correll, N. Materials that couple sensing, actuation, computation, and communication. Science 347, 1261689 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 7.

    Hauser, H., Ijspeert, A. J., Füchslin, R. M., Pfeifer, R. & Maass, W. Towards a theoretical foundation for morphological computation with compliant bodies. Biol. Cybern. 105, 355–370 (2011).

    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar
     

  • 8.

    Müller, V. C. & Hoffmann, M. What is morphological computation? On how the body contributes to cognition and control. Artif. Life 23, 1–24 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • 9.

    Laschi, C. & Mazzolai, B. Lessons from animals and plants: the symbiosis of morphological computation and soft robotics. IEEE Robot. Autom. Mag. 23, 107–114 (2016).

    Article 

    Google Scholar
     

  • 10.

    Caulfield, H. J. & Dolev, S. Why future supercomputing requires optics. Nat. Photon. 4, 261–263 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Miller, D. A. Are optical transistors the logical next step? Nat. Photon. 4, 3–5 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Ospelkaus, C. et al. Microwave quantum logic gates for trapped ions. Nature 476, 181–184 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 13.

    Lekitsch, B. et al. Blueprint for a microwave trapped ion quantum computer. Sci. Adv. 3, e1601540 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 14.

    Katsikis, G., Cybulski, J. S. & Prakash, M. Synchronous universal droplet logic and control. Nat. Phys. 11, 588–596 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Weaver, J. A., Melin, J., Stark, D., Quake, S. R. & Horowitz, M. A. Static control logic for microfluidic devices using pressure-gain valves. Nat. Phys. 6, 218–223 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Mosadegh, B., Bersano-Begey, T., Park, J. Y., Burns, M. A. & Takayama, S. Next-generation integrated microfluidic circuits. Lab Chip 11, 2813–2818 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 17.

    Woodhouse, F. G. & Dunkel, J. Active matter logic for autonomous microfluidics. Nat. Commun. 8, 15169 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 18.

    Preston, D. J. et al. Digital logic for soft devices. Proc. Natl Acad. Sci. USA 116, 7750–7759 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 19.

    Volkov, A. G., Adesina, T., Markin, V. S. & Jovanov, E. Kinetics and mechanism of Dionaea muscipula trap closing. Plant Physiol. 146, 323–324 (2008).

    Article 

    Google Scholar
     

  • 20.

    Yang, R., Lenaghan, S. C., Zhang, M. & Xia, L. A mathematical model on the closing and opening mechanism for venus flytrap. Plant Signal. Behav. 5, 968–978 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 21.

    Jiang, Y., Korpas, L. M. & Raney, J. R. Bifurcation-based embodied logic and autonomous actuation. Nat. Commun. 10, 128 (2019). Demonstrates environmentally responsive mechanical logic by using bistable beam mechanisms and stimuli-responsive materials.

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 22.

    Horsman, C., Stepney, S., Wagner, R. C. & Kendon, V. When does a physical system compute? Proc. Royal Soc. Lond. A 470, 20140182 (2014). Provides a framework for unconventional computing, distinguishing abstract computation from physical embodiment.

    ADS 
    MATH 

    Google Scholar
     

  • 23.

    Feynman, R. P. Feynman Lectures on Computation (CRC Press, 2018).

  • 24.

    MacLennan, B. J. Natural computation and non-Turing models of computation. Theor. Comput. Sci. 317, 115–145 (2004).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • 25.

    Silva, A. et al. Performing mathematical operations with metamaterials. Science 343, 160–163 (2014).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar
     

  • 26.

    Mohammadi Estakhri, N., Edwards, B. & Engheta, N. Inverse-designed metastructures that solve equations. Science 363, 1333–1338 (2019).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar
     

  • 27.

    Zangeneh-Nejad, F. & Fleury, R. Topological analog signal processing. Nat. Commun. 10, 2058 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 28.

    Howell, L. L. Compliant Mechanisms (John Wiley & Sons, 2001).

  • 29.

    Qiu, J., Lang, J. H. & Slocum, A. H. A curved-beam bistable mechanism. J. Microelectromech. Syst. 13, 137–146 (2004).

    Article 

    Google Scholar
     

  • 30.

    Oh, Y. S. & Kota, S. Synthesis of multistable equilibrium compliant mechanisms using combinations of bistable mechanisms. J. Mech. Des. 131, 021002 (2009).

    Article 

    Google Scholar
     

  • 31.

    Cazottes, P., Fernandes, A., Pouget, J. & Hafez, M. Bistable buckled beam: modeling of actuating force and experimental validations. J. Mech. Des. 131, 101001 (2009).

    Article 

    Google Scholar
     

  • 32.

    Camescasse, B., Fernandes, A. & Pouget, J. Bistable buckled beam: elastica modeling and analysis of static actuation. Int. J. Solids Struct. 50, 2881–2893 (2013).

    Article 

    Google Scholar
     

  • 33.

    Wu, C. C., Lin, M. J. & Chen, R. The derivation of a bistable criterion for double V-beam mechanisms. J. Micromech. Microeng. 23, 115005 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 34.

    Ion, A., Wall, L., Kovacs, R. & Baudisch, P. Digital mechanical metamaterials. In Proc. 2017 CHI Conference on Human Factors in Computing Systems 977–988 (ACM, 2017). Demonstrates the use of 3D-printed modular bistable elements to perform digital logic, including ‘combination lock’ mechanisms.

  • 35.

    Song, Y. et al. Additively manufacturable micro-mechanical logic gates. Nat. Commun. 10, 882 (2019). Realizes a full set of digital mechanical logic gates via 3D printing of bistable flexural beams.

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 36.

    Hälg, B. On a micro-electro-mechanical nonvolatile memory cell. IEEE Trans. Electron Dev. 37, 2230–2236 (1990). Provides an early example of the use of constrained beams to represent binary information.

    ADS 
    Article 

    Google Scholar
     

  • 37.

    Raney, J. R. et al. Stable propagation of mechanical signals in soft media using stored elastic energy. Proc. Natl Acad. Sci. USA 113, 9722–9727 (2016). Demonstrates mechanical diodes and logic gates based on the propagation of stable, nonlinear transition waves in architected soft systems of coupled bistable beams.

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 38.

    Yasuda, H., Tachi, T., Lee, M. & Yang, J. Origami-based tunable truss structures for non-volatile mechanical memory operation. Nat. Commun. 8, 962 (2017). Demonstrates volumetric origami cells with tuneable stability and stiffness that store bit information in a bistable potential-energy landscape.

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 39.

    Hanna, B. H., Lund, J. M., Lang, R. J., Magleby, S. P. & Howell, L. L. Waterbomb base: a symmetric single-vertex bistable origami mechanism. Smart Mater. Struct. 23, 094009 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 40.

    Silverberg, J. L. et al. Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nat. Mater. 14, 389–393 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 41.

    Saito, K., Tsukahara, A. & Okabe, Y. New deployable structures based on an elastic origami model. J. Mech. Des. 137, 021402 (2015).

    Article 

    Google Scholar
     

  • 42.

    Jianguo, C., Xiaowei, D., Ya, Z., Jian, F. & Yongming, T. Bistable behavior of the cylindrical origami…

  • [ad_2]

    Read More:Mechanical computing – Nature